ΤΟΠΟΓΡΑΦΙΚΑ ΘΕΜΑΤΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΛΙΣΗΣ

1. ΓΕΝΙΚΑ

Εικόνα 1

'Οσο αυξάνεται η κλίση ( κ ) , τόσο αυξάνεται η γωνία κλίσεως ( α ) και τόσο μειώνεται η ζενίθια γωνία ( β ) . Δείτε εικόνα 1 και τον πίνακα που ακολουθεί :

ΚΛΙΣΗ ( % ) ΓΩΝΙΑ ΚΛΙΣΕΩΣ ( α ° ) ΖΕΝΙΘΙΑ ΓΩΝΙΑ ( β ° )
2 1.1458 88.8542
4 2.2906 87.7094
8 4.5739 85.4261
10 5.7106 84.2894
20 11.3099 78.6901
50 26.5651 63.4349
100 45 45
200 63.4349 26.5651

2. ΤΙ ΕΙΝΑΙ ΚΛΙΣΗ

Η κλίση μιας επιφάνειας αντιστοιχεί στη γωνία που σχηματίζεται μεταξύ δύο επιπέδων και εκφράζεται σε ποσοστό ( π.χ. 10 % ) . Το ένα επίπεδο , είναι το κεκλιμένο και το άλλο το νοητό , οριζόντιο ή κατακόρυφο .

Οι δύο σχηματιζόμενες γωνίες π.χ. α1 και β1 , α2 και β2 κ.ο.κ. είναι συμπληρωματικές .

Στην τοπογραφία , αναφερόμαστε ως προς το οριζόντιο επίπεδο . Η δε γωνία καλείται γωνία ύψους ή γωνία κλίσεως ( α ) και εκφράζεται σε μοίρες . Αν ήταν ως προς το κατακόρυφο επίπεδο θα λεγόταν , ζενίθια γωνία ή ζενίθια απόσταση ( β ) .

Γενικά , ως μονάδα μέτρησης χρησιμοποιούμε το Βαθμό . Ωστόσο όταν αναφερόμαστε σε γωνίες που αφορούν κλίσεις , ως μονάδα μέτρησης χρησιμοποιούμε τη Μοίρα .

3. ΔΙΑΚΡΙΣΗ ΚΛΙΣΗΣ

Η κλίση , διακρίνεται σε Κατά Μήκος και σε Εγκάρσια . Για να κατανοήσουμε αυτές τις έννοιες , θα εξετάσουμε ένα ανηφορικό ευθύγραμμο τμήμα δρόμου και μια στροφή .

3.1 ΚΑΤΑ ΜΗΚΟΣ ΚΛΙΣΗ

Λέμε λοιπόν , αυτός ο δρόμος έχει Κατά Μήκος Κλίση , π.χ. 15 % , δηλαδή κλίση κατά μήκος του άξονα της οδού .

Το 15 % σημαίνει , ότι από το σημείο που ξεκινάει η ανηφόρα και στο τέλος οριζόντιας απόστασης 100 μέτρων , ανεβαίνουμε κατακόρυφα 15 μέτρα . Κατά αυτόν τον τρόπο σχηματίζεται ένα ορθογώνιο τρίγωνο , του οποίου η υποτείνουσα είναι ο δρόμος .

Σε οποιοδήποτε σημείο της οδού , η κλίση είναι 15 % ( εικόνα 2 ) .

Εικόνα 2

3.2 ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ

Στη στροφή ο δρόμος έχει την εγκάρσια κλίση ή επίκλιση π.χ. 2 % , δηλαδή κλίση κάθετη στον άξονα της οδού . Χωρίς αυτήν θα είχαμε εκτροπή των αυτοκινήτων από την πορεία τους και φανταστείτε την οδήγηση στα βουνά , όπου δίπλα στους δρόμους είναι απότομοι γκρεμοί !!

Συνοπτικά , η οδήγηση στις στροφές επηρεάζεται από τους εξής παράγοντες :

Την κατάσταση του οδοστρώματος ( τριβή ) .
Την ταχύτητα και το κέντρο βάρους του οχήματος .
Την ακτίνα καμπυλότητας .
Την εγκάρσια κλίση .

Αυτοί είναι οι σημαντικότεροι παράγοντες που καθορίζουν το μέγεθος της φυγόκεντρης δυνάμεως ( δύναμη που τραβάει τα οχήματα προς τα έξω , ενώ η κεντρομόλος τα τραβάει προς τα μέσα ) .

Μικρή εγκάρσια κλίση δίνουμε και στα ευθύγραμμα τμήματα των οδών , προς τα έξω ή προς τα μέσα , με σκοπό την αποστράγγιση του οδοστρώματος , για ασφαλέστερη οδήγηση και μεγαλύτερη διάρκεια ζωής του ( εικόνα 3 ) .

Εικόνα 3

Στα πεζοδρόμια ( εικόνα 4 ) δίνουμε μικρή κλίση ( προτείνεται μέχρι 1.5 % ) προς το οδόστρωμα , για την απομάκρυνση των υδάτων ( αυτό έχει ως αποτέλεσμα τη διευκόλυνση κυκλοφορίας των πεζών ) και συνεπώς τη μεγαλύτερη διάρκεια ζωής τους .

Εικόνα 4

Σε τελική ανάλυση , η εγκάρσια κλίση είναι απαραίτητη σε όλα τα καταστρώματα ( με οποιαδήποτε κατά μήκος κλίση ) . Με αυτόν τον τρόπο , τα νερά οδηγούνται στα φρεάτια υδροσυλλογής και εξασφαλίζεται η ομαλή λειτουργία .

4. ΔΙΑΦΟΡΟΙ ΤΡΟΠΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΚΛΙΣΕΩΣ

1. Ένας απ' αυτούς είναι με το σύγχρονο ταχύμετρο . Η τελευταία σειρά διαθέτει και λέϊζερ . Τα total station δείχνουν αυτόματα στην οθόνη τους , τη γωνία κλίσεως εκφραζόμενη σε μοίρες . Ο Τοπογράφος , οριζοντιώνει το όργανο εκεί που ξεκινάει η ανηφόρα ( ή οπουδήποτε πάνω της ) και σ' ένα σημείο της ομοιόμορφης επιφάνειας , τοποθετεί το κάτοπτρο . Αφού " πάρει " το σημείο , μέσα στη μνήμη του επεξεργάζεται κεκλιμένη απόσταση - ζενίθια γωνία ή γωνία κλίσεως , και στα απαραίτητα τοπογραφικά στοιχεία που υπολογίζει , υπάρχει και το αποτέλεσμά της , εκφρασμένο σε ποσοστό .

2. 'Aλλος τρόπος είναι με χωροβάτη και μετροταινία ( κοντινές αποστάσεις ) . Αυτό το όργανο βρίσκει την υψομετρική διαφορά δύο σημείων . Έτσι έχουμε την κατακόρυφη πλευρά ( ψ ) και με τη μετροταινία μετράμε την κεκλιμένη απόσταση Κα ( το δρόμο ) . Το ορθογώνιο τρίγωνο επιλύεται :

Κα ² = χ ² + ψ ² ⇒
χ ² = Κα ² - ψ ² ⇒
χ = √ Κα ² - ψ ²

κ ( % ) = ( ψ / χ ) * 100

3. Για απλές εργασίες , ένας τρόπος είναι να μετρηθούν , με μια μετροταινία ή μεζούρα , το κατακόρυφο ( ψ ) και το οριζόντιο μήκος ( χ ) . Η κλίση κ είναι :

κ ( % ) = ( ψ / χ ) * 100
ΥΠΟΛΟΓΙΣΜΟΣ ΚΛΙΣΗΣ

4. Nα χρησιμοποιήσουμε ένα απλό ή ψηφιακό κλισίμετρο , το οποίο μας δίνει με πολύ καλή ακρίβεια , κλίση και γωνία ( ζενίθια ή κλίσεως ) . Δείτε την κατασκευή ενός απλού κλισίμετρου με σχετικό βίντεο ,
εδώ Μετάβαση σε ιστοσελίδα των Τοπογραφικών Θεμάτων
.

5. ΠΑΡΑΔΕΙΓΜΑΤΑ

1. Μετρήσαμε το κατακόρυφο μήκος ( ψ ) 30 εκ και θέλουμε να κατασκευάσουμε ράμπα , με 5 % κλίση ( κ ) . Πόση θα είναι η οριζόντια απόσταση ( χ ) ;

ΛΥΣΗ : Τα 30 εκ ισούνται με 0.30 μ . Αφού στα 100 μέτρα οριζόντιας απόστασης , αντιστοιχεί 5 μέτρα κατακόρυφο μήκος ( κ = 5 % ) , στα 0.30 μέτρα κατακόρυφο μήκος , πόση οριζόντια απόσταση αντιστοιχεί ;

χ = ( 0.30 * 100 ) / 5 = 30 / 5 = 6 μ

Εικόνα 5 , μεταλλική ράμπα με 5% κλίση

2. Η κλίση ( κ ) 17 % , σε πόσες μοίρες γωνία κλίσεως ( α ) αντιστοιχεί ;

ΛΥΣΗ : 17 % σημαίνει , 100 μέτρα οριζόντιο μήκος ( χ ) και 17 μέτρα κατακόρυφο μήκος ( ψ ) . Ο τύπος είναι :

εφ α = ψ / χ ⇒

εφ α = 17 / 100 ⇒

εφ α = 0.17 ⇒

α = τοξ εφ 0.17 ⇒

α = 9.6480 °

3. 'Oταν η γωνία κλίσεως ( α ) είναι 3 ° , να υπολογιστεί πόσο τοις εκατό είναι η κλίση ( κ ) του δρόμου ;

ΛΥΣΗ :
Στα 100 μέτρα οριζόντιου μήκους ( χ ) Μετάβαση σε άλλο σημείο της ίδιας ιστοσελίδας
, θα βρούμε πόσο είναι το κατακόρυφο μήκος ( ψ ) . Ο τύπος είναι :

εφ α = ψ / χ ⇒

εφ 3 ° = ψ / 100 ⇒

0.0524 = ψ / 100 ⇒

ψ = 100 * 0.0524 ⇒

ψ = 5.24 μ

Η κλίση κ ( % ) είναι :

κ = ( ψ / χ ) * 100 ⇒

κ = ( 5.24 / 100 ) * 100 ⇒

κ = 5.24 % ή κ ≈ 5 %

ΕΡΩΤΗΣΗ : Γιατί πρέπει να λέμε στα 100 μέτρα ,
οριζόντιου μήκους ( χ )... ; Μετάβαση σε άλλο σημείο της ίδιας ιστοσελίδας
ΑΠΑΝΤΗΣΗ : Στον τύπο της
κλίσεως ( κ ) Μετάβαση σε άλλο σημείο της ίδιας ιστοσελίδας
παρατηρούμε ότι , επιλέγοντας χ = 100 το αποτέλεσμα γίνεται κ = ψ . 'Ετσι η αριθμητική τιμή του ψ που υπολογίζεται πρώτη , αποτελεί και τιμή κ . Δηλαδή , δε χρειάζεται να εφαρμόζουμε τον τύπο της κλίσεως ( κ ) .

ΕΡΩΤΗΣΗ : Με ποιον τρόπο υπολογίζω την κλίση ( κ ) , για οριζόντιο μήκος ( χ ) = 40 μ και την ίδια γωνία κλίσεως ( α ) = 3 ° ;

ΑΠΑΝΤΗΣΗ : Στα 40 μέτρα οριζόντιου μήκους ( χ ) , θα βρούμε πόσο είναι το κατακόρυφο μήκος ( ψ ) . Ο τύπος είναι :

εφ α = ψ / χ ⇒

εφ 3 ° = ψ / 40 ⇒

0.0524 = ψ / 40 ⇒

ψ = 40 * 0.0524 ⇒

ψ = 2.096 μ

Η κλίση κ ( % ) είναι :

κ = ( ψ / χ ) * 100 ⇒

κ = ( 2.096 / 40 ) * 100 ⇒

κ = 0.0524 * 100 ⇒

κ = 5.24 % ή κ ≈ 5 %
4. Πόσο είναι το κατακόρυφο μήκος ( ψ ) στα 30 μέτρα οριζόντιου μήκους ( χ ) , για π.χ. κλίση 14 % ;

ΛΥΣΗ : Στα 100 μέτρα οριζόντιας απόστασης ( χ ) , αντιστοιχούν 14 μέτρα κατακόρυφου μήκους ( ψ ) . Στα 30 μέτρα οριζόντιας απόστασης ( χ ) , πόσο είναι το κατακόρυφο μήκος ( ψ ) ;

ψ = ( 30 * 14 ) / 100 = 420 / 100 = 4.2 μ

6. ΕΦΑΡΜΟΓΗ

ΔΙΝΟΝΤΑΙ :

β : Ζενίθια Γωνία ( 0 - 90 μοίρες )

Κα : Κεκλιμένη Απόσταση ( σε μέτρα )

ΖΗΤΟΥΝΤΑΙ :

α : Γωνία κλίσεως

χ : Οριζόντια Απόσταση

ψ : Υψομετρική διαφορά

κ : κλίση

ΛΥΣΗ :

α = 90 - β

χ = συν α * Κα

ψ = ημ α * Κα

κ = ( ψ / χ ) * 100

6.1 ΔΙΕΥΚΡΙΝΙΣΕΙΣ

Αν η ζενίθια γωνία β είναι μεγαλύτερη από 90 μοίρες , χρησιμοποιούμε την παραπληρωματική της ( π.χ. αν η γωνία είναι 93 μοίρες , βάζω 180 - 93 = 87 ) .

Αν έχετε υπολογίσει τη γωνία κλίσεως α , δώστε στο πρόγραμμα την ζενίθια γωνία β , κάνοντας την εξής πράξη : β = 90 - α .

'Ολες οι έννοιες , είτε πω κατακόρυφη απόσταση , είτε κατακόρυφο μήκος , είτε υψομετρική διαφορά , συμβολίζονται με το γράμμα ψ .

Εικόνα 6


ΥΠΟΛΟΓΙΣΜΟΣ ΥΨΟΜΕΤΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΔΙΝΟΝΤΑΙ :

ΥΠΟΛΟΓΙΖΟΝΤΑΙ :

© Google Inc. , Αποστολίδης Θ. Σάββας
Προγραμματιστής - Τοπογράφος Μηχανικός ΤΕ

Απαντήθηκαν ερωτήματα στο τρίτο παράδειγμα .
( Τελευταία ενημέρωση : 02 / 02 / 2022 )